



# Implementation of an exploratory workbench for identifying similar design decisions

Prateek Bagrecha, Garching, 12.02.2018, Advisor: Manoj Mahabaleshwar

Software Engineering betrieblicher Informationssysteme (sebis) Fakultät für Informatik Technische Universität München

wwwmatthes.in.tum.de

## Agenda



- Introduction
- □ Research Questions
- Requirements
- □ System Design
- Process Overview
- Implementation Overview
- Evaluation
- Lessons Learned



## **Introduction: Design Decisions**



In software architecture, *Design Decisions* are **decisions that address** *architecturally significant requirements*. They are

- Hard to make
- Costly to Change
- □ Often influence similar concerns → Reuse ?

Could knowledge about past decisions be used to make new informed decisions ?





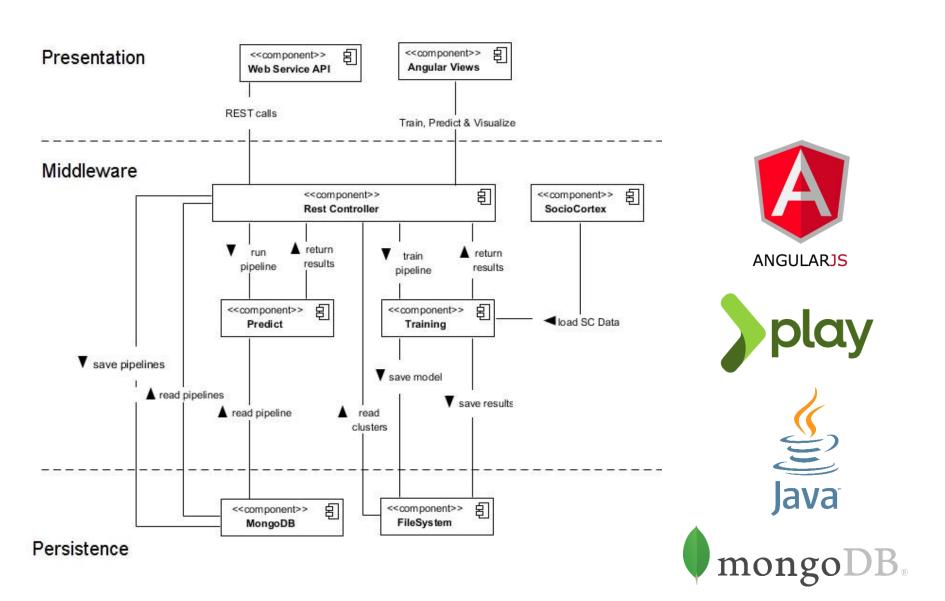
| Issues      | <u>SPARK-8321</u>                                                        | <u>SPARK-19625</u>                                                                     |
|-------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Description | Authorization Support(on all<br>operations not only DDL) in<br>Spark Sql | Authorization Support(on all<br>operations not only DDL) in Spark<br>Sql version 2.1.0 |
| Concepts    | Apache, SQL, authentication                                              | Apache, SQL, authentication                                                            |
| Keywords    | Spark, operations, Support,<br>Authorization                             | Spark, operations, Support,<br>Authorization                                           |
| Components  | SQL                                                                      | Spark Core, SQL                                                                        |
| Issue Type  | Improvement                                                              | Improvement                                                                            |
| Created     | 12/Jun/15 03:34                                                          | 16/Feb/17 09:36                                                                        |
| Resolved    | 16/Jun/16 08:22                                                          | 24/Mar/17 01:21                                                                        |



## **Research Questions**

- What are the functional and non-functional requirements of a workbench that supports identifying similar design decisions?
- How to identify similar design decisions using context-aware similarity measures and clustering analysis?
- How can a workbench support end-users in identifying the contextual parameters that are necessary for identifying similar design decisions ?

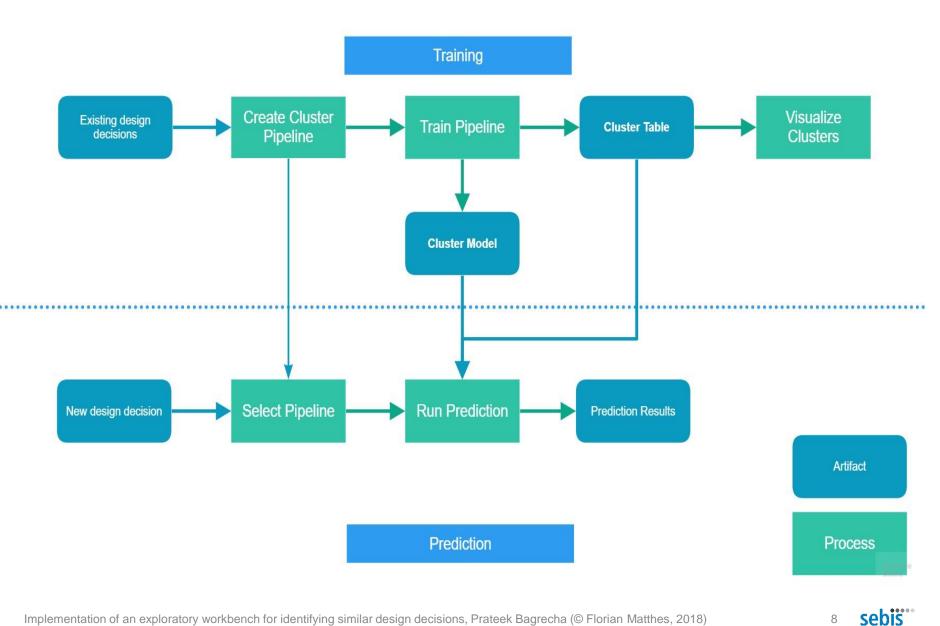



## Requirements

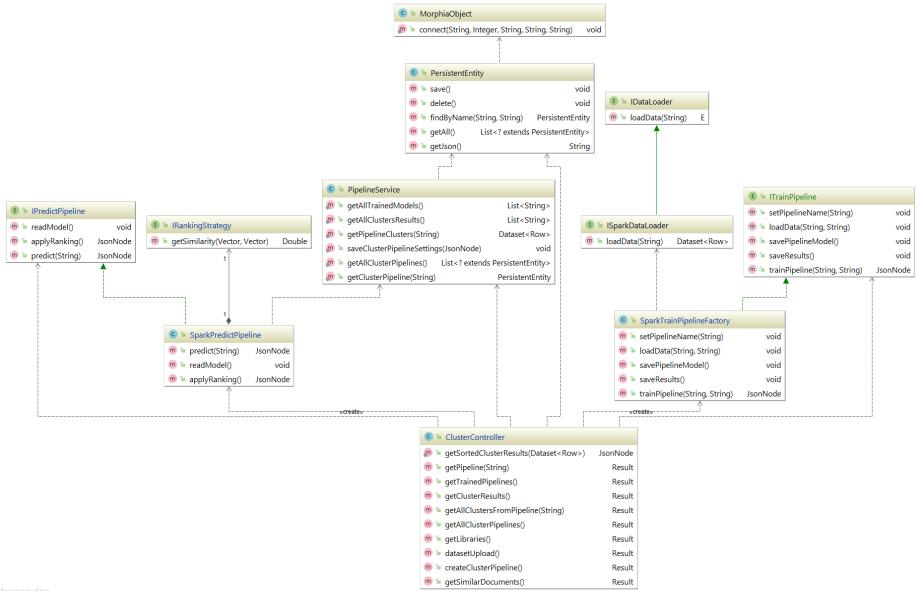


- Workbench to provide both UI & Restful APIs
  - □ for creating & configuring experiments for clustering design decisions
  - □ to input new design concern and predict similar past design decisions
- □ Workbench shall abstract all operations related to identifying similar design decisions
- Automated import of data from SocioCortex & Amelie knowledge base
- Import different data formats
- □ Extension points for using multiple machine learning libraries
- Workbench is extensible without significant impact to system design




## System Design






## **Process Overview**

8



## Implementation Overview





## DEMO



## **Evaluation Strategy**

#### **Evaluation Steps**

- □ For each design decision from the training dataset
  - □ Mark related design decisions (related to, parent tasks, duplicates etc.)
  - **Run Predict Pipeline**
  - □ Check if the returned results contains related design decision

#### Datasets

- □ 2 Open Source Projects : Apache Solr & Hadoop Common
- □ 1 Component Based Cross Project Decisions



## **Evaluation Results**

| Project          | Doc Key        | Sample Results | Cosine<br>Similarity | Jaccard<br>Similarity | Duplicate | Related (Related<br>To/Part of/Depends<br>on) |
|------------------|----------------|----------------|----------------------|-----------------------|-----------|-----------------------------------------------|
| Solr             | SOLR-236       | SOLR-1311      | 99.83                | 10.18                 | No        | Yes                                           |
|                  |                | SOLR-237       | 99.42                | 26.51                 | No        | Yes                                           |
| Solr             | SOLR-373       | SOLR-7986      | 99.41                | 60.00                 | Yes       | No                                            |
| SQL<br>Component | CARBONDATA-440 | CARBONDATA-504 | 93.20                | 28.57                 | No        | Yes                                           |
|                  |                | CARBONDATA-503 | 93.20                | 28.57                 | No        | Yes                                           |

Duplicates with relatively high cosine similarity and Jaccard similarity

□ Related issues (related to, sub-tasks, duplicated by, parent etc. )

#### Industrial Impacts

- Connected Mobility Lab, Siemens
  - Do not maintain related issues
- Digital Factory- Motion Control, Siemens
  - Expert Recommendation



## Lessons Learnt

- □ No two machine learning libraries are the same
  - Different representation of ml models
  - Different representation of results
- □ Occurrence of distinct decisions in the same cluster → Model Tuning & Retraining
- □ Low number of related design decisions across projects
- □ Inability to recognize some related words for example: upsert is related to update.





# Thank you



## **Future Works**

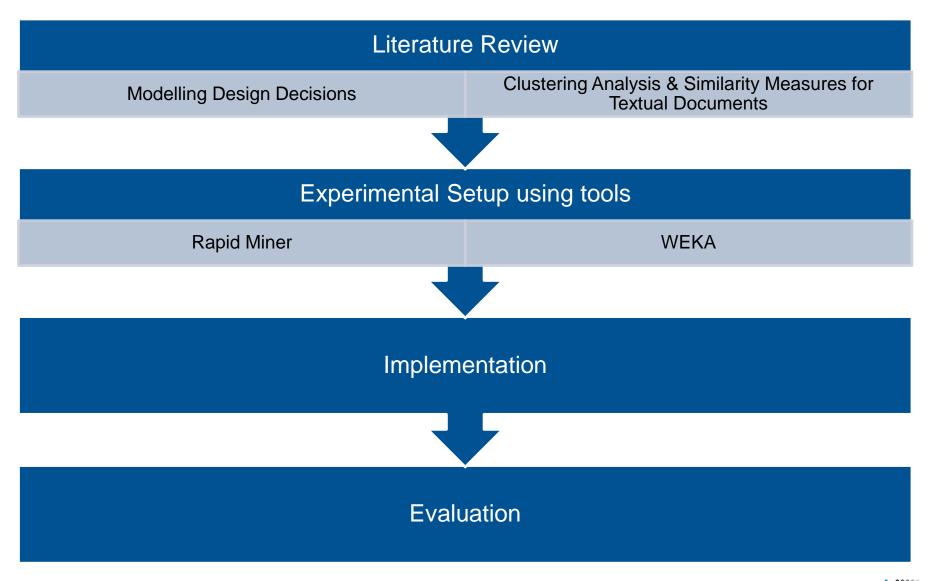
- □ Implement cross functional pipelines → working with different libraries within a single pipeline
- Custom implementation of clustering algorithm that supports cosine similarity as distance measure
- □ Support soft clustering mechanism
- Pipeline retraining & model tuning
- □ Extended visualization of results corresponding to clustering algorithms
- □ Further evaluation of the workbench



### Evaluation Results Performance

| Project        | Document<br>Size (KB) | Members | Training<br>Time | # of<br>Clusters | Average<br>cluster size |
|----------------|-----------------------|---------|------------------|------------------|-------------------------|
| SocioCortex    | 603                   | 726     | 18.93s           | 20               | 37                      |
| Apache Solr    | 6411                  | 6175    | 1.2mins          | 30               | 206                     |
| Hadoop Commons | 4024                  | 6262    | 46.55s           | 20               | 313                     |
| SQL Component  | 14107                 | 10069   | 1.8              | 30               | 334                     |




# ПΠ

#### **Motivation**

#### By reusing knowledge from past decisions

- Documentation specifying constraints on similar design decisions
- □ Communication visual representation of related design decisions
- □ Complexity Inferring the complexity for addressing similar design decisions





ПΠ

Helpful if second reporter could have been informed about the similar design decision made in past

- Reduced time to analyse
- □ Reduced time to resolution
- □ Reduced turn-around time for expert feedback

Given an open design decision, search the knowledge base for similar earlier made design decisions.

